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SUMMARY 

Four mathematical techniques concerned with peak recognition in liquid chro- 
matography by means of photodiode array detection are evaluated for application 
in the iterative regression design optimization of the mobile phase. The techniques 
are multicomponent analysis, multicomponent analysis with a non-negativity con- 
straint, target factor analysis and iterative target testing. 

The results obtained for two-component clusters depend to a different degree 
on chromatographic resolution and changes in the UV spectra caused by a variation 
of the eluent composition. Multicomponent analysis is independent of resolution but 
highly sensitive to minute changes in the spectra. Iterative target testing needs no 
spectral information, but requires a reasonable resolution. Provided adequate spectra 
are available, target factor analysis allows excellent recognition down to very low 
resolution. 

INTRODUCTION 

The optimization of a liquid chromatographic separation can be performed by 
a systematic variation of the composition of the eluent. When the optimization is 
performed by an iterative regression design1*2 with the advantage of a limited number 
of chromatograms, it is essential that the retention times of all solutes in each chro- 
matogram are known. This can be achieved by separate injection of all solutes, pro- 
vided they are known and available. However, a more efficient method can be de- 
veloped when corresponding solutes can be recognized directly in consecutive chro- 
matograms of the sample. Such recognition is prerequisite when we are dealing with 
an unknown sample. 

A one-dimensional detection system, such as single-wavelength UV or RI de- 
tection, does not provide enough information to be used in a recognition procedure. 
The limitations of dual-wavelength detection, i.e. the ratio method, have been re- 
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ported3. An extension towards detection systems with a higher dimensionality, such 
as the multi-wavelength linear photodiode array detector, is indicated4v5. 

In a previous publication6 an approach has been described based on visual 
evaluation and comparison of spectra collected during elution of a mixture using 
mobile phases with different compositions. As a first step towards further automation 
of the optimization scheme, we will now attempt to evaluate the observed chro- 
matograms by means of mathematical techniques. 

The ensuing problems can be divided into two categories. First, in the case of 
a complete separation, we have a direct comparison of spectra of pure components, 
either mutually or with reference spectra. Contrary to library searches with reduced 
(coded) IR or mass spectra, a more extensive comparison between the spectra is 
needed owing to a lack of specificity of UV spectra. Since we are dealing with libraries 
of limited size, the time required fo; the comparisons is not an important factor. 
Previously, direct correlation has bec:n used to compare UV spectra. Wegener er ale7 
have used several statistical techniqtles and direct correlation for the identification 
of cosmetic dyes. Fells proposed the use of higher order derivatives to emphasize 
small differences between the spectra. 

Second, when optimizing a chromatographic system, complete separation of 
all components is unlikely in the first chromatograms recorded. Hence, poorly re- 
solved components must be recognized either by matching mixed spectra with those 
from a library, or by extracting pure component spectra from the measured mixture 
spectra. When the peaks of the chromatogram under consideration are represented 
by sets of spectra one can perform an analysis of variance, thus avoiding strict as- 
sumptions on peak-shape. Again two situations arise: either all contributing solutes 
(in a peak or in the sample) and their spectra are known, or for one or more com- 
ponents no spectrum is available in the set of reference spectra. In the latter case 
there is a possibility that the unknown spectra can be derived from another chro- 
matogram of the same sample, or one can use one of the deconvolution techniques 
currently availableg-’ l. 

Here we are concerned with the performance of certain well known techniques, 
such as multicomponent analysis12*i3 and target factor analysisi4*’ 5, both utilizing 
spectra from a library, and the iterative target transformation analysislO, which can 
be used when no preliminary information is available. Special emphasis is given to 
the two major problems encountered, i.e. the influence of the chromatographic reso- 
lution and the change in the spectral characteristics of the solutes due to a change in 
the mobile phase composition. 

A separate problem is the determination of the actual number of components 
involved in each cluster of peaks. The answer to this question is usually derived by 
performing an analysis of variance, i.e. principal component analysis (PCA) or factor 
analysis (FA) coupled with a discrimination criterion14. The best results in this re- 
spect are achieved by using the technique of cross-validation16. A residual error 
function is generally adequate when the experimental error is well known and nor- 
mally distributed. 

THEORY 

In this section we will briefly discuss some well known mathematical and sta- 
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tistical techniques with special emphasis on the problems mentioned in the introduc- 
tion. 

Direct comparison of UV spectra 
When we want to recognize more or less completely separated component 

peaks in different chromatograms, the problem is reduced to a direct comparison of 
UV spectra. Since the recorded spectra are in digital form and show little fine struc- 
ture, a comparison of all corresponding absorbances expressed in a correlation coef- 
ficient will yield the best results 17q1*. For systems with a relatively small number of 
components the required calculation time is of less importance. The correlation coef- 
ficient r can be expressed as follows: 

r= 
J{(~(XiY - (cxi>‘/n) . (zC_Yi>2 - (c_VJ2/n)> 

(1) 

where xi and yi represent the absorbances of the spectra x and y measured at wave- 
length i. Introduction of the denominator into eqn. 1 normalizes the spectra in such 
a way that the sum of squared absorbances for each spectrum equals 1. The corre- 
lation coefficient thus compares spectra for their shape, but not for their magnitude. 
Other statistical tests employed7 are closely related to the correlation coefficient. For 
instance the sum of squares, SS, of the differences between two normalized and av- 
eraged spectra can be expressed as: 

SS = 2 f (1 - r) (2) 

The following sections are concerned with chromatographic peaks observed for two 
or more poorly resolved components, thus requiring a more extensive pretreatment 
of the data, known as spectral deconvolution. 

Multicomponent analysis (MCA) 
When we have a spectral description of all possible components contributing 

to the observed spectra, the application of a multicomponent analysis is straightfor- 
ward. After a general description with regard to spectral analysis by Blackburn12, it 
has been extensively used for different applications in the past two decades13. Using 
a matrix notation the general problem can be described by 

S.C = A (3) 

where S is a (w x n) matrix with n columns of reference spectra defined for w wave- 
lengths and A is a (w x t) matrix with t columns representing mixture spectra re- 
corded during the elution of a chromatographic peak. These two matrices are coupled 
through the (n x t) matrix C containing the contributions of the individual reference 
spectra needed for a reproduction of the measured spectra after summation. In an 
ideal situation the n rows of matrix C will either contain zeroes, indicating the absence 
of a component, or follow a more or less gaussian elution profile, since the measured 
spectra are ordered with respect to time. 
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MCA is straightforward when the number and nature of the reference spectra 
agree with the actual components present in the elution profile. In the more realistic 
situation that the number of candidate reference spectra exceeds the number of com- 
ponents, we ask from MCA that it uses (and hence selects) out of that larger number 
only those solutes actually present in the profile. 

The least-square solution for eqn. 3 can be expressed as the pseudo-inverse: 

C = (sT.s)-1.sT.A 

Various alternatives to determine matrix C, based on different transformations of 
the data, have been proposedlg. 

Experimental conditions can introduce deviations in the measured spectra, 
which will produce errors in the estimated contributions of all library spectra used. 
In general, random errors will be small and will influence the calculated concentra- 
tions of all components more or less equally. Systematic errors such as a shift will 
tend to influence only the estimated concentrations of certain components, thus sug- 
gesting the presence or partial absence of certain components. 

BurnsJO improved the accuracy of MCA by imposing a certain peak-shape, 
something we prefer to avoid. He also applied an algorithm of Lawson and Hansoni 
to prevent the occurrence of negative concentrations. Since these negative concen- 
trations are often introduced in connection with erroneous positive amounts of other 
components, application of this non-negative least-squares solution will improve the 
overall results. 

Target factor analysis (TFA) 
Because MCA considers in turn every mixture spectrum recorded during elu- 

tion, all pure-component spectra must be available collectively. In contrast, we may 
test for the presence of individual components sequentially by an evaluation of the 
variation in subsequent mixture spectra. This technique, an application of factor 
analysis, is described by Malinowski (among others), both in general14 and for high- 
performance liquid chromatography with UV detection (HPLC-UV)15. 

Again, we use the general description (eqn. 3) as derived by the application of 
the linearity principles of the Lambert-Beer law. By eliminating those components 
not present in the set of spectra under consideration we reduce the matrices to S’, a 
(w x m) matrix consisting of the spectra of the m components actually present, and 
C’, a (m x t) matrix containing the elution profiles of those m components: 

A = s’ . C’ (5) 

In this way we can describe all observations (the absorptions of matrix A) with only 
a limited number of elements (the spectra and elution profiles in the matrices S’ and 
C’). 

When we regard the spectra as t points in a w-dimensional space, with the 
absorptions observed at different wavelengths represented on the respective axes, 
only a limited part of the total space can be occupied by spectra resulting from 
mixtures of a limited number of components, owing to the relations between the 
observed absorbances at different wavelengths for the same component. When only 
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one component is present, all points are situated on a straight line through the origin, 
since the concentration varies but the relative absorptions do not. Similarly two 
components will define a two-dimensional surface and m components an m-dimen- 
sional hyperspace. 

Through mathematical techniques (principal component analysis, factor analy- 
sis) we can derive a description of the m-dimensional hyperspace connected with a 
set of observations. This abstract description has the same structure as eqn. 5 (and 
is therefore a form of data-reduction) and can be transformed to the true-component 
spectra or elution profiles: 

A = R . ET = R . T . T-1 . ET = S’ . C’ (f-5) 

R is an (W x m) matrix, giving a general description of all spectra present in the 
mixture: every spectrum of the original set can be derived from a linear combination 
of the columns of R. This holds also true for the pure-component spectra, hence an 
appropriate transformation of R through the (m x m) matrix T will result in the 
calculation of S’. The same applies for the (t x m) matrix E containing the abstract 
description of the elution profiles (as columns). 

The actual target test determines whether we can expect a given pure-com- 
ponent spectrum to be situated in the hyperspace described by R. This can be 
achieved by projecting a known spectrum onto the hyperspace and comparing the 
projection and the original spectrum. If they resemble each other closely enough the 
component is thought to be present. From a chromatographer’s point of view, the 
problem is that all components must be identified before the corresponding elution 
profiles can be found from the inverse transformation T-‘, since the calculation of 
every row of T-’ depends on all columns of T. The individual calculation of these 
columns is performed by: 

t= (RT.R)-l.RT.S 

where s represents a spectrum from the collection of reference spectra. Mark the 
similarity between eqns. 4 and 7, indicating that MCA is nothing but a projection of 
the unknown spectrum in the hyperspace defined by the reference spectra. 

Iterative target transformation (ITT) 
The methods described thus far have as a major limitation that all pure-com- 

ponent spectra connected with a chromatographic peak should be available before 
the individual elution profiles can be determined. More often than not the chroma- 
tographer is only partly aware of what is present in a mixture. By using the general 
description of eqn. 6 and imposing a number of boundary conditions (non-negative 
concentrations and individual absorptions), one can approximate the original spectra 
by means of an extrapolation of the observed variation, either in the abstract de- 
scription of the spectra or the elution profiles. Applications of this so-called “self- 
modelling curve resolution” have been described for two- and three-component pro- 
files”. 

Recently, a more general approach for the HPLC-UV combination was de- 
scribed by Vandeginste et al. lo the so-called “iterative target transformation”. The , 
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method is applicable to clusters of more than three components and does not require 
any spectral knowledge with regard to the pure-component spectra. The only as- 
sumptions made are connected with the shape of the elution profile: it should be 
non-negative at all times and exhibit an unimodal distribution (only one maximum). 

The method may be briefly described as follows. After a rotation of the abstract 
description of the elution profile (Varimax) a first approximation of the contributing 
solute-profiles is derived. This approximation determines the first target to use in a 
target test, equivalent to eqn. 7 but using the matrix E instead of R: 

t = (ET. E)-’ . ET. cl @a) 

4 = E.1 

where cl represents the first target and c; its projection. The resulting projection is 
refined according to the demands formulated above and again subjected to a target 
test. This process is repeated until no further refinement is possible or no further 
iteration is observed. In this way the elution profiles of all components present in the 
peak are determined. Having thus found E, we can use the inverse transformation 
(eqn. 6) to determine the corresponding pure-component spectra. 

EXPERIMENTAL 

Instrumentation 
The chromatographic experiments were performed using a Novapak Cia col- 

umn (15 cm x 3.9 mm I.D., 5 pm particles) and a M6000A pump, both from Mil- 
lipore Waters (Milford, MA, U.S.A.). The detector was the HP-1040A fast-scanning 
LDA detector (Hewlett-Packard, Waldbronn, F.R.G.) connected to an HP-85 desk- 
top computer, equipped with input/output, plotter/printer, mass storage and advance 
programming ROMs, 16 kbyte, additional memory, HP-IB IEEE-488 interface and 
RS-232C serial interface. The data were temporarily stored on 5$ in. flexible disks 
using a HP82910M disk-drive. 

The collection of recorded spectra was transferred from the HP-85 to a 
PDPl l/O3 system (Datacare, Zeist, The Netherlands) by means of the serial interfaces 
on both computers. All calculations were performed on the PDP11/03, which was 
equipped with two 8 in. disk-drives, a RD51 hard disk unit, 4006-l Computer Display 
Terminal (Tektronix, OR, U.S.A.) and HP7470A graphics plotter with serial inter- 
face. 

Chromatographic data 
For the calculations to be described in the next section we used spectra and 

chromatograms obtained for eight chlorinated phenols. The identities, applied con- 
centrations and some retention times are listed in Table I. Throughout the following 
discussion the components will be referred to by their number in this table. With the 
basic optimization method in mind, we collected spectra in seven mobile phases of 
approximately isoelutropic composition, by separately injecting all components and 
storing the recorded spectra on the upslope, apex and downslope of the detected 
peaks. Although the spectra were recorded between 190 and 400 nm, only the interval 
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TABLE I 

IDENTITIES OF THE CHLORINATED PHENOLS 

Listed are the concentration C used in the experiments and the retention times observed in acetonitrile- 

water (35:65) (tR1) and tetrahydrofuran-water (35:65) (f&. The water was acidified with phosphoric acid 

(0.001 M). 

No. Component c [RI tic2 

(mdml) (min) (min) 

1 p-Chloro-o-cresol 0.49 5.87 7.70 

2 2,5-Dichlorophenol 0.25 5.84 9.46 
3 p-Chloro-m-cresol 0.25 4.92 6.48 
4 2,3-Dichlorophenol 0.25 5.21 6.48 
5 3,5-Dichlorophenol 0.50 7.96 13.33 
6 2,4-Dichloro-5-methylphenol 0.50 9.35 11.40 
7 p-Chlorophenol 0.26 3.50 5.32 
8 o-Chlorophenol 0.25 3.10 4.33 

between 230 and 400 nm was used, owing to excessive noise at lower wavelengths 
caused by the absorption of the mobile phase. The spectra in acetonitrile-water 
(3565) are presented in Fig. 1. 

In addition, mixture spectra were recorded during the elution of chromato- 
grams of various resolutions of components 5 and 6. The corresponding mobile phase 
compositions are listed in Table II. The elution profiles recorded at 230 nm are 

230 Xlnml 400 230 Alnml 400 

Fig. 1. The UV spectra of eight chlorinated phenols listed in Table I. The components were dissolved in 
acetonitrile-water (35:65). 
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65% Hz0 65% Hz0 

35%THF 35%ACN 

t- 
Fig. 2. The retention behaviour of components 5 and 6 as a function of the mixing ratio q listed in Table 
II, coupled with chromatograms recorded during elution with the indicated mobile phase compositions. 
The chromatographic resolution is indicated with R. THF = tetrahydrofuran, ACN = acetonitrile. 

displayed in Fig. 2. For a mathematical treatment of the data we selected 45 evenly 
spaced mixture spectra across every profile. 

Software 

The software used in the analysis of the spectrum-clusters and for the com- 
parison of spectra was written in Fortran IV. The applied algorithm for the multi- 
component analysis was directly derived from the pseudo-inverse (eqn. 3). The al- 
gorithm for the non-negative version of the MCA is described by Lawson and Han- 
son19. The software for the application of the target test was developed using the 
description by Malinowsky and Howery14 and was extended to the iterative target 
test according to Vandeginste et al.‘O. 

As far as internal memory allowed, the matrix calculations were used from the 
Scientific Subroutine Package from DEC (Marlboro, MA, U.S.A.), as was the Var- 
imax subroutine. In all other cases the calculations were performed by simple algo- 
rithms, if necessary with intermediate storage on disk. The eigenvalues and eigen- 
vectors of the covariance-matrix of the data-matrix were determined by the HQRII 
algorithmzl. 

All calculated elution profiles were expressed as quantities of pure-component 
spectra, normalized such that the sum of all squared absorptions of a pure-compo- 
nent spectrum equals 1. This means that the vectors connected with these pure-com- 
ponent spectra have unit length. In the case of the ITT we transformed the calculated 
spectra and elution profiles in such a way that they complied to this condition as 
well. 

RESULTS AND DISCUSSION 

In order to evaluate the above techniques with respect to spectral recognition 
and determination of retention times, there are three major influences to be con- 
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TABLE II 

MIXING RATIOS cp AND CORRESPONDING MOBILE PHASE COMPOSITIONS, USED TO 

ELUTE THE MIXTURE OF COMPONENTS 5 AND 6 AND RECORD THE SPECTRA OF ALL 

CHLORINATED PHENOLS LISTED IN TABLE I 

The water was acidified with phosphoric acid (0.001 M). 

cp Aeetonitrile (%I Tetrahydrofuran (%) Water (%) 

1.000 35 0 65 

0.714 25 10 65 

0.657 23 12 65 

0.600 21 14 65 

0.500 17 18 65 
0.286 10 25 65 
0.000 0 35 65 

sidered: first, the dependence of the spectral characteristics on the mobile phase com- 
position; second, the amount of chromatographic resolution; and third, the spectral 
similarity of the components involved (spectral resolution). The first two factors can 
be studied and varied systematically. The spectral similarity is inherent in the group 
of components under examination (Fig. 1). Except for solute number 8, the corre- 
lation coefficient between pure-component spectra varies from 0.85 to 0.998. The 
influence of chromatographic resolution was investigated for the two-component sys- 
tem containing the chlorinated phenols 5 and 6 (Table II, Fig. 2) which cross-over 
when going from a 35% acetonitrile binary to a 35% tetrahydrofuran binary. Un- 
avoidably, the variation in chromatographic resolution thus achieved is accompanied 
by a variation in spectral characteristics as a result of the changing mobile phase. 

To avoid differences in injection volumes, sampling times and chromatograph- 
ic reproducibility, reference elution profiles for components 5 and 6 were not derived 
from separate injections of the solutes. Instead, we used the theoretically most reliable 
profiles to be found from spectral deconvolution: the profiles resulting after MCA 
using only the spectra of components 5 and 6 recorded in the same mobile phase 

t Imml --+ I 
10 

Fig. 3. The recorded chromatogram, T, of a mixture of components 5 and 6, and the individual component 
profiles calculated by means of MCA, using only the correct pure component spectra of 5 and 6. Mobile 
phase: acetonitrile-tetrahydrofuran-water (17.5:17.5:65) (cp = 0.5). 
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used to elute the mixture. An example is presented in Fig. 3. Consecutive elution 
profiles resulting from the application of the different spectral deconvolutions were 
compared with the reference profiles in the following way: the sum of squared dif- 
ferences was calculated after normalizing both profiles to the norm of the reference 
profile. In this way not only the shape but also the observed deviations in the amount 
of absorbance were involved in the evaluation. 

Fig. 4. The true profiles (---) of components 5 and 6 as determined for cp = 0.5 and the individual 
component profiles (p) calculated by means of MCA, using the spectra of all eight chlorophenols. (a) 
Profiles calculated using the correct spectra, recorded in the same solvent used to elute the mixture. (b) 
Profiles calculated using approximate spectra, recorded in a different solvent (q = 0). 
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The in@ence of the mobile phase composition 
First, we investigated the performance of MCA using an extended set of pure- 

component spectra, a situation that would occur when we know which components 
are present in the mixture, but when we do not know where they are situated in the 
chromatogram. This method, however, is very susceptible to experimental and sys- 
tematic errors, especially in the case of large sets of reference spectra. 

Fairly good results are obtained when we perform the MCA with the reference 
spectra of all chlorinated phenols, recorded in the same mobile phase used to elute 
the mixture. The results for the mixture containing 17% acetonitrile and 18% tet- 
rahydrofuran (q = 0.5) are displayed in Fig. 4a. As we can see, there is only a minor 
disturbance from components not present in the mixture, caused by experimental 
errors in the measured spectra and mathematical round-off. Attention is drawn to 
the reverse profiles of components 1 and 3: the spectra are so much alike that a 
difference of a positive and negative contribution is used to describe the observed 
experimental error. 

A systematic error can be introduced by a difference in composition between 
the mobile phase used to elute the mixture, and the solvent used for the determination 
of the pure component spectra. Fig. 5 shows the difference between the spectra of 
components 5 and 6 in acetonitrile-water (35:65) and tetrahydrofuran-water (35:65), 
respectively. A small shift of 1 to 2 nm can be observed. 

Because of this influence, quite a different picture emerges when we perform 
the same calculations on the profile recorded for cp = 0.5 with the spectra recorded 
in 35% tetrahydrofuran (cp = 0.0) (Fig. 4b). The small shift in the spectra causes 
large errors in the estimated concentrations, both positive and negative, because the 
procedure tries to eliminate the differences between measured spectra and linear com- 
binations of reference spectra with additional contributions of the other components. 
As a consequence we can no longer determine which or even how many components 
are present in this cluster. 

Some improvement can be obtained with the non-negative MCA, as is shown 
in Fig. 6a. Again we used the reference spectra in 35% tetrahydrofuran but, by 

0.6 
5 

t 

A 

230 h lnml - 400 

t 

AAn 0.05 

61 

\; ; 

30 .A lnml - 400 

Fig. 5. The pure component spectra of components 5 and 6, recorded in acetonitrile-water (35:65) (---) 
and in tetrahydrofuran-water (35:65) (---), respectively, as well as the difference spectra. 
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Fig. 6. The true profiles (---) of components 5 and 6 and the individual component profiles (-) 
calculated by means of MCA and applying a non-negativity criterion, using approximate spectra of all 
eight chlorophenols recorded at q = 0. The elution profiles were recorded at (a) cp = 0.5 and (b) 
cp = 0.6. 

eliminating the negative contributions of component 3, the compensating contribu- 
tions of component 1 are automatically reduced. Still the results are far from satis- 
factory. Component 6 is correctly identified, but component 5 is at best uncertain 
and there seem to be more than two components present. Fig. 6b demonstrates an 
even more dramatic example for the same solutes at lower resolution. Here, com- 
ponent 5 has completely disappeared and has been replaced by a combination of the 
components 4 and 7. Apparently, MCA only performs well when the exact spectra 
in the mobile phase used are available. 

Far better results are observed when we perform a preselection of appropriate 
spectra (components) by means of a target test. As described in the theoretical sec- 
tion, we project our targets on the description derived from the mixture spectra. As 
the first step we conclude, from a principal component analysis (PCA), that there are 



PEAK-RECOGNITION TECHNIQUES IN LC 193 

two components present in this cluster, hence we reduce our abstract description to 
two vectors: every observed spectrum can be reconstructed as a linear combination 
of these two vectors. Similarly, the true solute spectra can also be reconstructed as 
a linear combination of the two vectors. After performing a target test with all eight 
reference spectra from our reference file the two most likely candidates are deter- 
mined. The corresponding transformation matrix is inverted and used to determine 
the corresponding elution profiles. As an example Fig. 7 displays the elution profiles 
derived from the profile recorded for cp = 0.5, after a target test with the spectra of 
all eight components in 35% tetrahydrofuran and selecting 5 and 6 as the true com- 
ponents, since these components display the highest correlation when used as targets. 

Obviously TFA provides a much better estimate of the true elution profiles 
than MCA or non-negative MCA. The main reason is that the disturbances caused 
by the other components in the reference file are removed beforehand. In principle 
we can perform MCA with the selected targets, but, as is shown by eqn. 6, when we 
have determined the necessary transformations for the spectra we might as well de- 
termine the corresponding elution profiles by means of the inverse transformation. 
In fact we are investigating all measured spectra in one calculation, thus compen- 
sating partly for the time required for the principal component analysis. 

As before, the remaining difference in Fig. 7 between the estimated and the 
true elution profiles is due to mobile phase effects on the solute spectra. When these 
deviations are expressed as the sum of squared absorbance differences (SS), their 
value increases with increassing difference in mobile phase composition used for re- 
cording the reference spectra and the sample spectra, respectively. This is illustrated 
in Fig. 8, where the curves refer to the observed deviations in the profiles of com- 
ponents 5 and 6 for cp = 0.5, presented in Fig. 7, after TFA was performed with 
reference spectra recorded in different solvents (cp ranging from 0.0 to 1.0). It is 
important to note, however, that for this set of components TFA invariably selects 
the correct solutes 5 and 6 from the total set of eight chlorinated phenols tested. 

‘Pref = 0 
r = 0.9966 

t Iminl - I 
9 10 

Fig. 7. The true profiles (---) of components 5 and 6 and the individual component profiles (-) 
calculated by means of TFA, after selecting approximate spectra of components 5 and 6 recorded at 
0 = 0. 
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0 0.2 0.4 0.6 0.8 1 

1Qref - 

Fig. 8. The observed difference between true profiles and profiles calculated by means of TFA of com- 
ponents 5 and 6 at cp = 0.5, when using reference spectra recorded in various solvents, indicated by the 
mixing ratio qrsr. The difference is expressed as the sum of squared differences, SS, between true and 

calculated profile. 

Consequently, although elution profiles and, hence, quantitative analysis is hampered 
by a poor knowledge of the exact spectra, the correct identification is not. Obviously, 
for the present purpose of optimization, the latter observation is extremely important. 

When investigating ITT we are dealing with the reverse approach. Now we 
start with the determination of the elution profiles and use these to derive the pure 
component spectra. Again two points are important with regard to peak recognition 
for chromatographic optimization: first, the identity of the component as indicated 
by its spectral characteristics; and second, the corresponding retention time, or more 
generally the quality of the elution profile. Because of the nature of the technique, 
the simultaneous contemplation of a collection of mixture spectra, these two char- 
acteristics are closely related: when the calculated elution profile deviates from the 
true profile the calculated component spectrum will be in error as well. 

When the components are reasonably well separated and consequently the 
elution profiles are fairly well defined, the major differences between the calculated 
spectra and the corresponding spectra in the reference set are mostly caused by the 
difference in the respective mobile phase compositions. As was to be expected from 
Fig. 5, this deviation is not dramatic. This is further illustrated in Fig. 9, which shows 
correlation coefficients between the calculated spectrum of component 5 for cp = 
0.714 (R = 0.41) after application of ITT, and reference spectra of all eight solutes 
recorded in various mobile phases defined by the mixing ratio cp. The performance 
in the total recognition procedure will be mainly determined by the spectral similar- 
ities between the components in the reference set. In this example component 5 is 
always identified correctly, independent of the mobile phase used to record the ref- 
erence spectra; the same result was found for the other component in the cluster, i.e. 
component 6. 
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Fig. 9. The correlation coefficient r between a spectrum, obtained by ITT from the elution profile recorded 
at cp = 0.7 (R = 0.4), and reference spectra of six chlorinated phenols recorded in various solvents 
indicated by (pier. Displayed are the correlation coefficients resulting from comparisons with spectra of 
components 1 (O), 2 (0), 3 (O), 4 (A), 5 (0) and 6 (V). Component 5 is correctly selected as the most 
probable solute in all cases. 

The injluence of the chromatographic resolution 
The second major influence on the performance of the spectral deconvolution 

techniques is the extent of chromatographic separation between the components. 
Because of the asymmetric peak-shape of the chlorinated phenols we express the 
chromatographic resolution by means of the first and second moments of the refer- 
ence profiles instead of retention times and peak-widths: 

R = lM16 - d’f151/2. (@25 + +f26) 

where Ml5 and Ml6 are the first (central) moments of components 5 and 6, and M25 
and M26 are the second moments of these components, respectively. 

It follows from theoretical considerations that the performance of MCA and 
MCAO is independent of the chromatographic resolution. Since every measured spec- 
trum is evaluated apart from the others, there is an independent determination of the 
concentrations in every mixture spectrum. It is for this reason that only MCA can 
be applied to unresolved solutes (as in UV spectrometry), although it only performs 
well when the reference spectra correspond exactly in number and in nature with 
those of the components in the mixture. 

In contrast, such an exact match is not needed for TFA and ITT, but con- 
versely some chromatographic resolution is essential and results become better with 
increasing resolution. Indeed, when two solutes approach each other more closely in 
the chromatogram, the mixture spectra recorded across the elution profile display 
fewer variations, thus increasing the difficulties in the determination of the correct 
number of components. In the preliminary PCA the first component is emphasized 
and the second one diminishes and becomes more subject to experimental error. 
Because the second principal component discriminates between the spectra of dif- 
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Fig. 10. The observed difference between true profiles and profiles calculated by means of TFA of com- 

ponent 5, resulting after simulation of an elution profile of a mixture of components 5 and 6 at cp = 1. 
The profiles display a variation in chromatographic resolution R. The difference is expressed as the sum 

of squared differences, SS, between true and calculated profile. The reference spectra of components 5 and 

6 were recorded in solvents corresponding to cp = 1 (O), cp = 0.6 (0) cp = 0.3 (0) and cp = 0 (V). 

ferent components, these errors can cause distortions in the calculated elution profiles 
even when the solutes are correctly identified in TFA. In ITT the distorted profiles 
produce equally distorted spectra making solute recognition much more difficult. 

In order to separate the influence of the mobile phase composition from the 
influence of the resolution on the results of TFA, different degrees of chromatograph- 
ic resolution were simulated by summing the individual profiles of the components 
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Fig. 11. The observed difference between true profiles and profiles calculated by means of ITT of com- 
ponents 5 (0) and 6 (a). The investigated profiles display a variation in chromatographic resolution R. 
The difference is expressed as the sum of squared differences, SS, between true and calculated profile. 
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Fig. 12. The results of ITT performed on a profile of components 5 and 6, showing severe overlap (R 
= 0.1). The mixture was eluted at cp = 0.6. (a) The true (---) and calculated (-) elution profiles. (b) 
The true (---) and calculated (-) spectrum corresponding to component 5. (c) As b but for component 
6. 
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5 and 6 with various relative positions. A target test was performed with reference 
spectra recorded in different mobile phases. The resulting deviations in the calculated 
elution profiles are shown as the sum of squared differences in Fig. 10. When the 
reference spectra agree exactly with those in the solvent used in eluting the mixture, 
which is the case at cp = 1, the elution profiles are reconstructed with remarkable 
precision down to a resolution as low as 0.006 (the smallest value tested). When the 
reference spectra do not match exactly, the reconstructed profiles deviate as shown 
by the larger values of SS at high resolution. Also, the deviations increase somewhat 
more at very low resolution (R < 0.1). 

It might be argued that these distortions are not important for qualitative 
investigations (e.g. the optimization strategy) as long as the components are identified 
correctly and the retention times do not deviate too much. When two (or more) 
components overlap severely they have almost identical retention times, hence the 
application in the optimization strategy should pose no problem. The major problem 
in cases of extreme overlap remains the correct determination of the number of com- 
ponents by PCA. 

When ITT is applied, the correct calculation of the elution profiles is much 
more important because of the earlier mentioned connection between calculated pro- 
files and the derived spectra. Unfortunately ITT is more sensitive to the degree of 
overlap than TFA. In comparison to Fig. 10, the SS values in Fig. 11 are higher and 
rapidly increase further when the resolution decreases below 0.2. As an example Fig. 
12a shows the reconstructed profiles in the case of a severe degree of overlap (R = 
0.09). Not only is the shape of the profiles distorted (evidenced by the absence of one 
peak-tail), there is also a shift in the location of the maxima. As expected, the dis- 
tortions in the profiles lead to deviating spectra (Fig. 12b and c). As a result, Fig. 
13 shows that a correct identification of componen; 5 is no longer possible, since 

1 

Fig. 13. The correlation coefficient r, resulting from a comparison of a spectrum, calculated by means of 
ITT from the profile recorded at q = 0.6 (R = O.l), and reference spectra of six chlorinated phenols 
recorded in various solvents indicated by qler. Displayed are the correlation coefficients resulting from 
comparisons with spectra of components 1 (lJ), 2 (0), 3 (O), 4 (A), 5 (0) and 6 (V). Instead of 
component 5, which was actually present, component 2 is selected as the most probable solute in all cases. 



PEAK-RECOGNITION TECHNIQUES IN LC 199 

component 2 shows a greater similarity with the calculated spectrum, independent 
of the solvent used to record the reference spectra. 

CONCLUSIONS 

From the analysis of various mathematical techniques for the deconvolution 
of a two-component elution profile the following conclusions can be drawn. 

Although the application of MCA is independent of the chromatographic reso- 
lution, it has some major disadvantages when used with larger reference sets. It is 
highly sensitive to a difference between the actual spectra and the reference spectra 
caused by a change in the mobile phase composition. This leads to large deviations 
of the estimated profiles and more seriously, impairs the correct identification of the 
two solutes present in the profile. Although we observed some improvements when 
applying a non-negativity criterium, the results are still inadequate for an unam- 
biguous recognition. Finally, MCA can only be applied when the set of reference 
spectra includes at least those of the components actually present in the peakcluster. 

In the case of TFA the influence of the change in the spectral characteristics 
is much less pronounced, mainly because the preliminary PCA limits the reconstruc- 
tion to the number of components actually present, even though their identity re- 
mains to be ascertained. Furthermore we can test for the presence of a component 
without knowing the spectra of the other components involved. Because we do need 
all spectra for a reconstruction of the elution profiles, however, this is only a minor 
advantage with respect to the chromatographic optimization strategy, which needs 
retention times as well as identities. As the examples have indicated the method 
becomes somewhat less accurate in cases of extreme overlap, although within the 
investigated group of eight chlorophenols positive recognition is still possible down 
to R = 0.006. Consequently retention times can be determined with high accuracy, 
which is important for optimization purposes. The ultimate value of TFA will rely 
on the ability of PCA to determine the number of components correctly. 

Obviously, the main advantage of ITT is the potential to determine elution 
profiles and spectra without any previous knowledge. When the solutes are reason- 
ably well separated the influence of the mobile phase composition is again minor. 
The major limitation of the method is connected with the sensitivity to the required 
resolution. When resolution drops below a minimum value, dependent on the spectral 
characteristics of the components involved, the method still yields approximate elu- 
tion profiles, but the derived spectra are too inaccurate for reliable solute recognition. 

Thus if there is adequate resolution we can apply ITT, which requires the least 
knowledge of the sample. When this fails, and unfortunately this is not always appar- 
ent, we have to use previously collected pure-component spectra, e.g. from another 
chromatogram with more resolution. The method of choice is then TFA, where dis- 
tortions caused by minor differences in the spectra can usually be ignored. When 
there is hardly any resolution (i.e. when we cannot determine the correct number of 
components) the only possibility is the application of MCA preferably with boundary 
conditions (non-negativity criterion). The results, however, cannot be trusted if there 
is a large difference between the reference and the experimental spectra as a result of 
the mobile phase effects. 
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